Search results for "dark matter experiment"

showing 10 items of 39 documents

Nuclear Contact Times in Dissipative Heavy Ion Collsions Measured Via γ-Ray Spectroscopy

1987

Electron spectra have been measured for elastic and dissipative U + Au collisions at 8.6 MeV/u and analysed within a simple schematic model which describes γ-ray emission in the presence of a nuclear contact time and a total kinetic energy loss (TKEL). A nearly linear dependence of the mean nuclear contact time τ and TKEL was found, reaching τ = 1.1 * 10-21 s with a variance σ = ±0.4 * 10-21 s for a TKEL of (400 ± 50) MeV.

PhysicsSIMPLE (dark matter experiment)Contact timeDissipative systemHeavy ionSchematic modelAtomic physicsImpact parameterSpectroscopyKinetic energy
researchProduct

A simple method for filtering pump fluid vapors from circulated helium

1973

Abstract A simple efficient ceramic filter has been introduced for separation of oil vapors from circulated helium. Oil vapors were observed to pass easily through standard cold-trap and zeolite filters. They behave in these filters in the same way as “carrier fragments” behave in the helium-jet recoil-transport method. The significance of this observation is discussed.

Condensed Matter::Materials ScienceSIMPLE (dark matter experiment)Materials sciencechemistryvisual_artvisual_art.visual_art_mediumchemistry.chemical_elementPhysics::Atomic PhysicsGeneral MedicineMechanicsFilter (signal processing)CeramicHeliumNuclear Instruments and Methods
researchProduct

Simulations of the effect of the contact energy levels on a simple model of a hot carrier cell

2016

In the present work, the performance of a simplified model of a hot carrier cell is examined at different energy levels of carrier collection. Incident photons, Monte Carlo generated by employing the ASTM G173-03 data set, are accounted for individually as they interact with the cell. It is assumed that the carriers can be collected ultra-fast, thus avoiding considering hot carrier thermalisation effects. Although the model is preliminary and lacking some mechanisms of hot carrier cells, it has been demonstrated that the present approach to modelling hot carrier solar cells can be developed into fully working models. Some effects of the absorption energy levels in the valence band have been…

010302 applied physicsWork (thermodynamics)SIMPLE (dark matter experiment)PhotonMaterials sciencebusiness.industryMonte Carlo methodElectrical engineering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesComputational physicsThermalisationEnergy absorbing0103 physical sciencesValence band0210 nano-technologybusinessEnergy (signal processing)2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)
researchProduct

Physics reach of the XENON1T dark matter experiment.

2016

The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \pm 0.15) \cdot 10^{-4}$ ($\rm{kg} \cdot day \cdot keV)^{-1}$, mainly due to the decay of $^{222}\rm{Rn}$ daughters inside the xenon target. The nu…

dark matter simulationsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectorsdark matter experimentFOS: Physical scienceschemistry.chemical_elementCosmic ray7. Clean energy01 natural sciencesdark matter simulationNuclear physicsRecoilXenonIonization0103 physical sciencesNeutronNuclear Experiment010306 general physicsPhysicsMuon010308 nuclear & particles physicsdark matter experimentsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)dark matter experiments; dark matter simulationschemistryNeutrinoNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

A simple model for computing diffuse solar radiation

1989

In this paper a very simple model for predicting the daily diffuse solar radiation at any Italian location using as input few extensively measured meteorological parameters is proposed. In fact the daily diffuse radiation D, MJ.m−2.day−1, here is correlated with only the relative sunshine duration sS and the noon altitude of the sun on the 15th of the month hn, degrees, by the following equation: D=7(sS−(sinhn)1.55 . The validity of this formula is verified using monthly mean daily data from four Italian stations displaced at various latitudes or altitudes or geographical situations (inland or coastal site). The test results show that the deviations between the measured and the computed val…

Diffuse radiationData recordsSIMPLE (dark matter experiment)AltitudeMeteorologyRenewable Energy Sustainability and the EnvironmentSunshine durationGeneral Materials ScienceNoonRadiationAtmospheric sciencesLatitudeMathematicsSolar Energy
researchProduct

A simple method for counting the number of trapped ions in an ion trap

1996

The number of stored Ca\(^+\) ions in an ion trap was measured optically by utilizing the metastable states. All the ions trapped are first pumped into the metastable \(D\) states. The ions in the metastable \(D\) states are transferred to the ground \(S\) state via the \(P\) state by exciting a \(D\rightarrow P\) transition. Each ion then emits one photon through a subsequent \(P\rightarrow S\) spontaneous emission. Thus, the number of photons is the same as the number of trapped ions initially in the metastable states. When a fraction of all the stored ions are pumped into the metastable states, the method is still applicable if the fraction of the ions is known.

PhysicsQuantum opticsSIMPLE (dark matter experiment)PhotonPhysics and Astronomy (miscellaneous)Other Fields of PhysicsGeneral EngineeringGeneral Physics and AstronomyIonPhysics::Plasma PhysicsMetastabilitySpontaneous emissionPhysics::Atomic PhysicsIon trapAtomic physicsApplied Physics B: Lasers and Optics
researchProduct

CP violation and the H-A lineshape

2007

In two-Higgs doublet models (and particularly in the MSSM) the CP-even (H) and CP-odd (A) neutral scalars are nearly degenerate in mass, and their s-channel production would lead to nearly overlapping resonances. CP-violating effects may connect these two Higgs bosons, giving origin to one-loop particle mixing, which, due to their mass proximity, can be resonantly enhanced, altering their lineshape significantly. We show that, in general, the effect of such a CP-violating mixing cannot be mimicked by (or be re-absorbed into) a simple redefinition of the H and A masses in the context of a CP-conserving model. Specifically, the effects of the CP-mixing are such that, either the mass-splitting…

PhysicsHistoryRange (particle radiation)Particle physicsSIMPLE (dark matter experiment)Degenerate energy levelsHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaContext (language use)Computer Science ApplicationsEducationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Higgs bosonCP violationMixing (physics)Boson
researchProduct

A very simple model for computing global solar radiation

1990

Abstract In this paper a very simple model for predicting the daily global solar radiation at any Italian location using as input of a few extensively measured meterological parameters is proposed. In fact the daily radiation G (MJ m−2) is here correlated only with the sunshine duration s (h) and the noon altitude of the sun on the 15th of the month h n (degrees) by the following equation: G= Ks 0.5 (sin h n ) 1.15 where only one value of the factor K is used. The validity of this formula is verified fixing K = 7.8 and using the data from 34 Italian stations displaced at various latitudes, altitudes or geographical situations (inland or coastal site). The test results show that the deviatio…

SIMPLE (dark matter experiment)Global solar radiationAltitudeMeteorologySunshine durationGeneral EngineeringMicroclimateNoonMaximum errorMathematicsLatitudeSolar & Wind Technology
researchProduct

PBH assisted search for QCD axion dark matter

2022

The entropy production prior to BBN era is one of ways to prevent QCD axion with the decay constant $F_{a}\in[10^{12}{\rm GeV},10^{16}{\rm GeV}]$ from overclosing the universe when the misalignment angle is $\theta_{\rm i}=\mathcal{O}(1)$. As such, it is necessarily accompanied by an early matter-dominated era (EMD) provided the entropy production is achieved via the decay of a heavy particle. In this work, we consider the possibility of formation of primordial black holes during the EMD era with the assumption of the enhanced primordial scalar perturbation on small scales ($k>10^{4}{\rm Mpc}^{-1}$). In such a scenario, it is expected that PBHs with axion halo accretion develop to ultracomp…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)axionsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesmustat aukotAstrophysics::Cosmology and Extragalactic Astrophysicshiukkasfysiikkakosmologianeutron starspimeä aineHigh Energy Physics - Phenomenology (hep-ph)neutronitähdetParticle Physics - PhenomenologyHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEdark matter experimentsHigh Energy Physics::Phenomenologyprimordial black holesAstronomy and Astrophysicshep-phHigh Energy Physics - Phenomenologyastro-ph.COkvanttiväridynamiikkaHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The relaxation dynamics of a simple glass former confined in a pore

2000

We use molecular dynamics computer simulations to investigate the relaxation dynamics of a binary Lennard-Jones liquid confined in a narrow pore. We find that the average dynamics is strongly influenced by the confinement in that time correlation functions are much more stretched than in the bulk. By investigating the dynamics of the particles as a function of their distance from the wall, we can show that this stretching is due to a strong dependence of the relaxation time on this distance, i.e. that the dynamics is spatially very heterogeneous. In particular we find that the typical relaxation time of the particles close to the wall is orders of magnitude larger than the one of particles …

SIMPLE (dark matter experiment)Materials scienceStatistical Mechanics (cond-mat.stat-mech)Relaxation (NMR)Dynamics (mechanics)General Physics and AstronomyFOS: Physical sciencesFunction (mathematics)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksTime correlationMolecular dynamicsOrders of magnitude (time)Chemical physicsCondensed Matter - Statistical Mechanics
researchProduct